Hinged Kite Mirror Dissection

نویسنده

  • David Eppstein
چکیده

Any two polygons of equal area can be partitioned into congruent sets of polygonal pieces, and in many cases one can connect the pieces by flexible hinges while still allowing the connected set to form both polygons. However it is open whether such a hinged dissection always exists. We solve a special case of this problem, by showing that any asymmetric polygon always has a hinged dissection to its mirror image. Our dissection forms a chain of kite-shaped pieces, found by a circle-packing algorithm for quadrilateral mesh generation. A hinged mirror dissection of a polygon with n sides can be formed with O(n) kites in O(n log n) time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyhedral Characterization of Reversible Hinged Dissections

We prove that two polygons A and B have a reversible hinged dissection (a chain hinged dissection that reverses inside and outside boundaries when folding between A and B) if and only if A and B are two non-crossing nets of a common polyhedron. Furthermore, monotone hinged dissections (where all hinges rotate in the same direction when changing from A to B) correspond exactly to non-crossing ne...

متن کامل

Hinged Dissection of Polyominoes and Polyforms

A hinged dissection of a set of polygons S is a collection of polygonal pieces hinged together at vertices that can be rotated into any member of S. We present a hinged dissection of all edge-to-edge gluings of n congruent copies of a polygon P that join corresponding edges of P . This construction uses kn pieces, where k is the number of vertices of P . When P is a regular polygon, we show how...

متن کامل

Hinged Dissection of Polypolyhedra

This paper presents a general family of 3D hinged dissections for polypolyhedra, i.e., connected 3D solids formed by joining several rigid copies of the same polyhedron along identical faces. (Such joinings are possible only for reflectionally symmetric faces.) Each hinged dissection consists of a linear number of solid polyhedral pieces hinged along their edges to form a flexible closed chain ...

متن کامل

Symmetry and Structure in Twist-Hinged Dissections of Polygonal Rings and Polygonal Anti-Rings

A geometric dissection is a cutting of a geometric figure into pieces that we can rearrange to form another figure. Twist-hinged dissections have the amazing property that all pieces are connected by special hinges that allow the one figure to be converted to the other by means of twists. This paper explores such dissections for ringlike figures based on regular polygons. The twist-hinged disse...

متن کامل

The Manifold Beauty of Piano-hinged Dissections

A geometric dissection is a cutting of one geometric figure into pieces that we can rearrange to form another. For some dissections, it is possible to hinge the pieces together, so that we can flip the pieces one way on the hinges to form one figure, and flip them another way to form the other figure. When the hinge connects two pieces along a shared edge in both target figures, the movement co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره cs.CG/0106032  شماره 

صفحات  -

تاریخ انتشار 2001